Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa.

نویسندگان

  • Bartolomé Moya
  • Carlos Juan
  • Sebastián Albertí
  • José L Pérez
  • Antonio Oliver
چکیده

The inactivation of ampD in Pseudomonas aeruginosa leads to a partially derepressed phenotype, characterized by a moderately high level basal ampC expression that is still further inducible, due to the presence of two additional ampD genes in this species (ampDh2 and ampDh3). The sequential inactivation of the three ampD genes was shown to lead to a stepwise upregulation of ampC expression, reaching full derepression in the triple mutant. To gain insight into the biological role of P. aeruginosa AmpD multiplicity, we determined the effects of the inactivation of the ampD genes on fitness and virulence. We show that, in contrast to what was previously documented for Salmonella spp., the inactivation of ampD in P. aeruginosa does not affect fitness or virulence in a mouse model of systemic infection. This lack of effect was demonstrated to be dependent on the presence of the additional ampD genes (ampDh2 and ampDh3), since the double and the triple ampD mutants completely lost their biological competitiveness and virulence; full ampC derepression and disruption of the AmpD peptidoglycan recycling system itself are both found to cause a major biological cost. Furthermore, among the ampD genes, ampDh3 is found to be the most relevant for virulence in P. aeruginosa. Therefore, as a consequence of the presence of additional ampD genes, partial ampC derepression mediated by ampD inactivation confers a biologically efficient resistance mechanism on P. aeruginosa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues.

Development of resistance to the antipseudomonal penicillins and cephalosporins mediated by hyperproduction of the chromosomal cephalosporinase AmpC is a major threat to the successful treatment of Pseudomonas aeruginosa infections. Although ampD inactivation has been previously found to lead to a partially derepressed phenotype characterized by increased AmpC production but retaining further i...

متن کامل

Molecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates

Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...

متن کامل

Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?

Understanding the interplay between antibiotic resistance and bacterial fitness and virulence is essential to guide individual treatments and improve global antibiotic policies. A paradigmatic example of a resistance mechanism is the intrinsic inducible chromosomal β-lactamase AmpC from multiple Gram-negative bacteria, including Pseudomonas aeruginosa, a major nosocomial pathogen. The regulatio...

متن کامل

Detection of Ampc and Extended-Spectrum Beta-Lactamases in Clinical Isolates of Pseudomonas Aeruginosa from Patients with Cystic Fibrosis

ABSTRACT        Background and Objectives: Pseudomonas aeruginosa is the most frequent opportunistic pathogen isolated from the sputum of patients with cystic fibrosis (CF). Resistance to β -lactam antibiotics may arise from over expression of the naturally occurring AmpC cephalosporinases or acquired extended-spectrum β-lactamases (ESBL). The aim of...

متن کامل

Identification of virulence genes in Pseudomonas aeruginosa isolated from human and animal samples by multiplex-PCR and their antibiotic resistance pattern

Background: Pseudomonas aeruginosa is a leading cause of Hospital-acquired infection worldwide. A major problem in the treatment of bacterial infections is the emergence of strains with multiple resistances (MDR). The aim of this study was to identify virulence genes lasB, toxA, algD, exos in Pseudomonas aeruginosa isolates from human and animal by Multiplex-PCR method and determination of anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 52 10  شماره 

صفحات  -

تاریخ انتشار 2008